AS-2009-000024 Rev.2 PSN-2009-0430

Applicability of Small Fast Reactor "4S" for Oil Sands Recovery

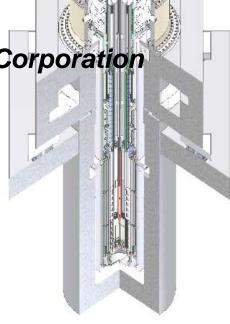
30th Annual CNS Conference / Western Focus Seminal May 31 - June 3, 2009 Calgary TELUS Convention Centre Calgary, AB, Canada

Kazuo Arie Plant Project Engineering Department Nuclear Energy Systems & Services Division Power Systems Company Toshiba Corporation

Co-authors

S. Matsuyama, Y. Nishiguchi, Y. Sakashita, S. Kasuga Toshiba Corporation Yokohama, Japan

M. Kawashima

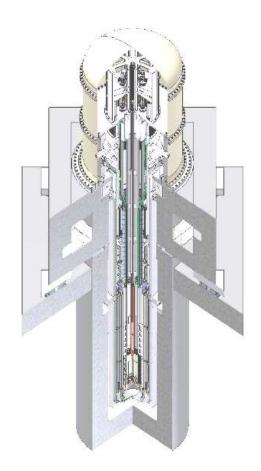

Toshiba Nuclear Engineering Services Corporation

Yokohama, Japan

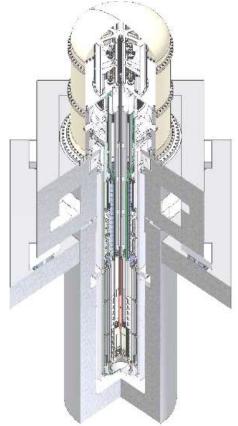
T. Grenci

Westinghouse

Waddell, Arizona, USA



Outline


- 1. Overview
- 2. Design Description
- 3. Advantages
- 4. Concluding Remarks

- 1. Overview
 - Features
 - > History
 - 4S Versions and Applications
- 2. Design Description
- 3. Advantages
- 4. Concluding Remarks

Features

Sodium cooled pool type fast reactor

Versions

Leading Innovation >>>

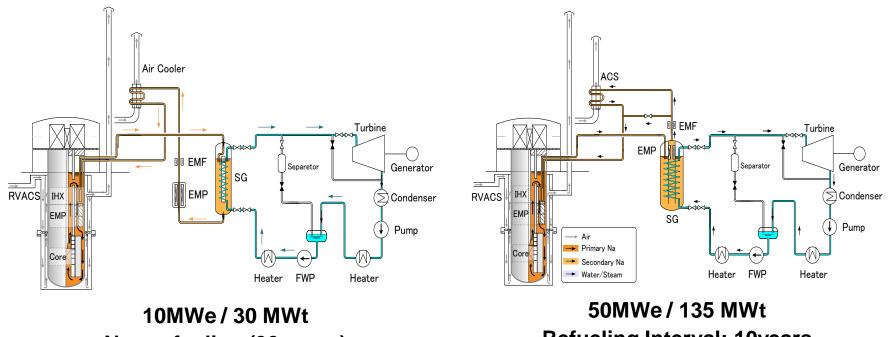

- 30 MWt (10MWe)
- 135 MWt (50MWe)

Main features

- Passive safety
- No onsite refueling or long interval 30 MWt: 30 years

135 MWt: 10 years

- Low maintenance requirements for static equipment
- Security enhanced by below grade siting


History

- 1988: Began conceptual design study in Toshiba
- 1991: IAEA seawater desalination study with CRIEPI
- 1993: US DOE's interest
- 2002 06: Innovative technology development funded by MEXT
- 2003: Galena, Alaska's interest
- 2004: US DOE's environmental assessment for Galena matter
- 2006: White paper for 4S introduction issued by Galena
- 2006: Selected one of the candidate reactors in GNEP SMR Working Group (collaboration between DOE – METI)
- 2007: Began study for application to oil sands treatment
- 2007: Began the pre-review of US NRC on 10MWe-4S
- 2008: Began key components demonstration funded by METI

4S Versions and Applications

Electric supply versions

Non-refueling (30 years)

Refueling Interval: 10years

In this study, "4S-135MWt" is applied to supply steam instead of electricity for bitumen recovery from oil sands assuming Steam Assisted Gravity Drainage (SAGD) method.

Application for Canadian Oil Sands

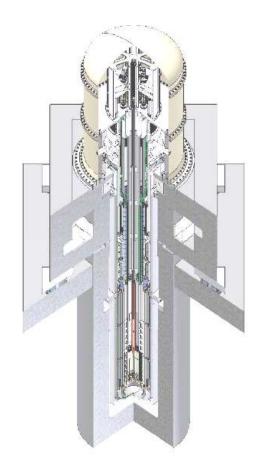
In Situ Projects	Bitumen Production [b/d]	Required Power for Steam Supply [MWt]	In Situ Projects	Bitumen Production [b/d]	Required Power for Steam Supply [MWt]
Chevron Canada Ellis River	100,000	767	KNOC BlackGold	20,000	153
CNRL Birch Mountain	30,000	230	Laricina Germain	1,800	14
CNRL Gregoire Lake	30,000	230	MEG Christina Lake	23,880	183
CNRL Kirby	30,000	230	NAOSC (Statoil) Kai Kos Dehseh	140,000	1073
CNRL Leismer	15,000	115	Nexen Long Lake	72,000	552
CNRL Primrose/Wolf Lake	120,000	920	Nexen Long Lake South	70,000	537
Connacher Great Divide	10,000	77	North Peace Energy Red Earth	1,000	8
ConocoPhillips Surmont	25,000	192	Patch Ells River	10,000	77
Devon Jackfish	35,000	268	Petrobank (Whitesands)	90,000	690
EnCana Borealis	32,500	249	Petro-Canada Chard	40,000	307
EnCana Christina Lake	30,000	230	Petro-Canada Meadow Creek	40,000	307
EnCana Foster Creek	30,000	230	Petro-Canada Lewis	40,000	307
Enerplus Kirby	25,000	192	Petro-Canada MacKay River	40,000	307
Husky Caribou Lake	10,000	77	Shell (BlackRock) Orion (Hilda Lake)	10,000	77
Husky Sunrise	50,000	383	Shell Peace River	50,000	383
Husky Tucker	30,000	230	Suncor Firebag	68,000	521
Imperial Oil Cold Lake	30,000	230	Total (Deer Creek) Joslyn	15,000	115
JACOS Hangingstone	25,000	192	Value Creation Terre de Grace	40,000	307

Source: Strategy West Inc. Report (2008) Assumption: 230 MWt for 30,000 b/d

Many sites require small power system (red columns)

8/22

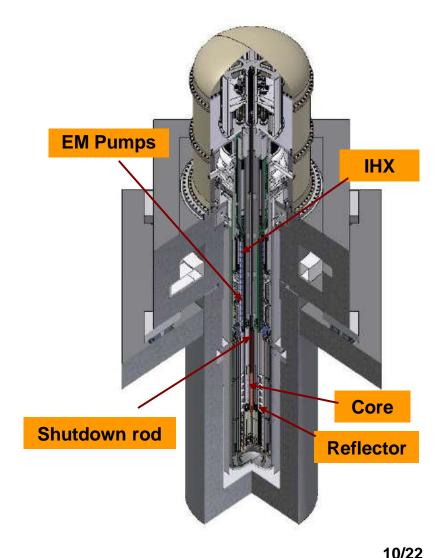
TOSHIBA Leading Innovation >>>


Copyright 2009, Toshiba Corporation.

1. Overview

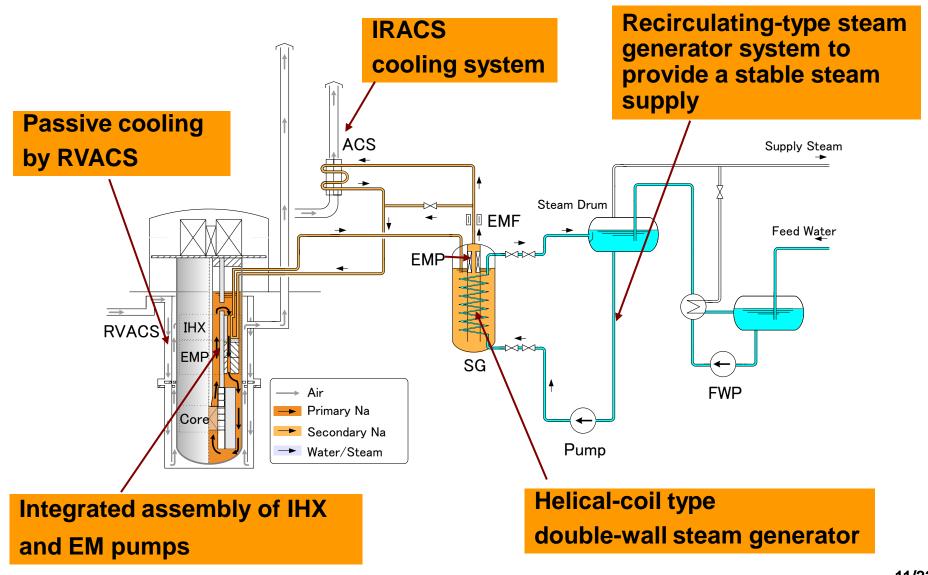
2. Design Description

- Reactor System
- Heat Transport System
- Reactor Building
- 3. Advantages
- 4. Concluding Remarks



Reactor System

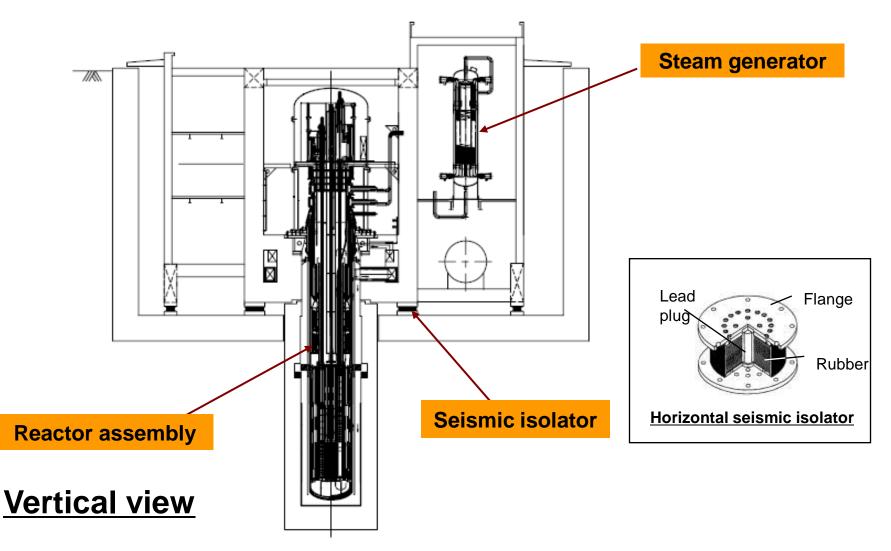
- >Metallic fuel core (U-10%Zr)
- Reactivity control by movable reflectors
- Shutdown system by reflectors and a shutdown rod
- Passive shutdown by metallic fuel properties during ATWS
- Electromagnetic pumps have no moving parts



....

Vestinghouse

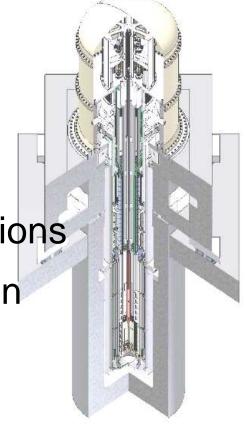
Heat Transport System



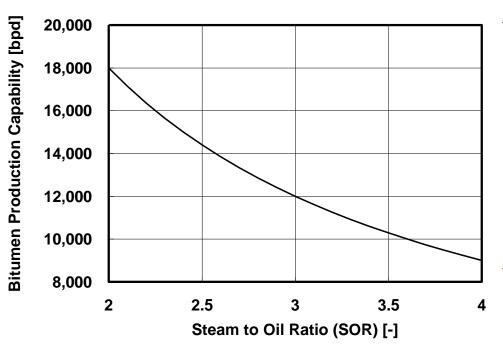
11/22

Vestinghouse

Reactor Building


Design Parameters

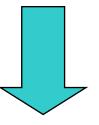
Туре	Sodium cooled pool type fast neutron reactor		
Thermal Output	135 MWt		
Number of Loops	1		
Plant / Fuel Life Time	30 / 10 years		
Fuel / Clad Material	U-10%Zr / HT-9		
Sodium Core Inlet / Outlet Temperature	355 / 510 degrees C		
Steam Supply Condition to SAGD plant	310 degrees C, 10.0 MPa		
Steam Supply Flow Rate to SAGD plant	238 t/h		
Decay Heat Removal System	RVACS + IRACS		
Reactivity Control System	Reflector Controlled		
Primary EM Pump	Linear annular induction type		
Intermediate Heat Exchanger (IHX)	Vertical shell-and-tube type straight tube		
Steam Generator	Double wall tube with wire mesh,		
Steam Generator	helical coil type		
Reactor Vessel Dimensions	Inner diameter : 3.6 m		
	Total height : 25 m		
Reactor Building Dimensions	31 m Long, 25 m Wide, 22 m High		


- 1. Overview
- 2. Design Description
- 3. Advantages
 - Bitumen Production
 - Plant Availability
 - Greenhouse Gas (GHG) Emissions
 - Modular Concept & Construction
- 4. Concluding Remarks

Bitumen Production

4S-135 MWt Capability

 ✓ One unit of 4S-135 MWt supplies steam for a relatively small SAGD plant to produce approx. 12,000 bpd of bitumen (@ SOR=3)


✓ The modular concept of 4S is a fit for oil sands application.

15/22

Plant Availability

- ✓ Core life time is 10 years
- ✓ Low maintenance requirements
- ✓ Outage for refueling and maintenance : less than 1 month

Plant availability

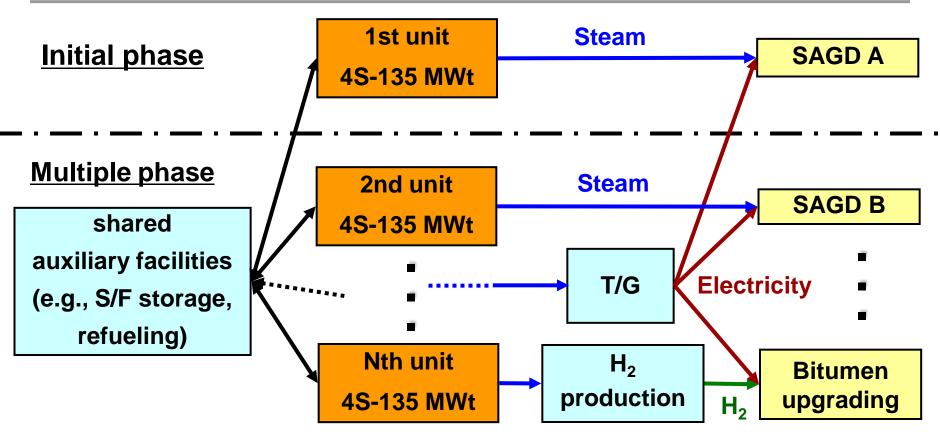
10 years / (10 years + 1 month) = 99%

Greenhouse Gas (GHG)

One unit of 4S-135 MWt plant supplies approx. 2 x 10⁶ t/y of steam to a SAGD plant corresponding to 9000 – 18,000 bpd production of bitumen.

Reduces approx. 400,000 t of CO₂ emissions per year (compared with a natural gas plant)

Further,


4S can produce hydrogen more efficiently than conventional nuclear reactors since coolant temperature is high.

If 4S is applied to supply hydrogen for upgrading bitumen, GHG emissions can be reduced further.

Modular Concept

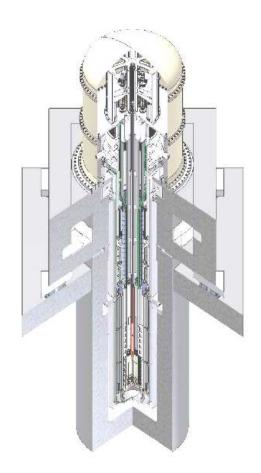
✓ Low initial costs & risk

 Cost reduction by plant standardization and shared facilities at multiple phase

18/22

TOSHIBA

Modular Construction


- ✓ Plant construction of 4S does not heavily depend on:
 - site location
 - site weather conditions
- ✓ Because,
 - the heaviest component is less than 100 tons
 - all components can be delivered to site by truck
 - construction time is less than 2 years

4S is a fit for oil sands applications

- 1. Overview
- 2. Design Description
- 3. Advantages
- 4. Concluding Remarks

Concluding Remarks

- ✓ A 4S-135 MWt plant concept supplying steam for a SAGD plant has been developed.
- The 4S application to oil sands recovery significantly reduces GHG emissions and has numerous advantages.
- ✓ The burden for development and licensing will be reduced in tie-ups with the program for 4S-30 MWt which is now in process of pre-application review by U.S. NRC.

Acronyms

- ATWS : Anticipated Transient without Scram
- **CRIEPI** : Central Research Institute of Electric Power Industry
- DWSG : Double-Wall Steam Generator
- EM pump : Electromagnetic pump
- **GNEP** : Global Nuclear Energy Partnership
- GHG : Greenhouse gas
- IAEA : International Atomic Energy Agency
- IHTS : Intermediate Heat Transport System
- IHX : Intermediate Heat Exchanger
- IRACS : Intermediate Reactor Auxiliary Cooling System
- METI : Ministry of Economy, Trade and Industry
- MEXT : Ministry of Education, Culture, Sports, Science and Technology
- **RVACS** : Reactor Vessel Auxiliary Cooling System
- SAGD : Steam Assisted Gravity Drainage
- SMR : Small and Medium Reactor
- SOR : Steam to Oil Ratio
- US DOE : United States Department of Energy
- **US NRC** : United States Nuclear Regulatory Commission

TOSHIBA Leading Innovation >>>